
Reconstruction of Dense

Correspondences
Martin Eisemann, Jan-Michael Frahm,

Yannick Remion, Muhannad Ismael

8.1 Introduction

This chapter concentrates on dense image correspondence estimation with
a special focus on stereo. Images are the basic input for a vast majority of
algorithms dealing with the reconstruction of the real world. To analyze a
scene from a collection of images it becomes inevitable to put these images
into correspondence. These correspondences then form the basis for many
subsequent analyses, including camera calibration, stereo and 3D recon-
struction, motion information, scene flow and others. While some of these
tasks like camera calibration require only sparse correspondences between
the images, Chapter 7, others require per-pixel correspondence, also known
as dense correspondence estimation.

Humans are extremely good at solving the correspondence problem
which most of them do all the time during depth perception. Basically,
the eyes serve as two cameras, slightly displaced, with respect to each
other, that capture the surrounding from two different viewpoints. When
focusing on an object at a certain distance one has already computed an
estimate of the distance in the brain and therefore of the object’s position
in space. It turns out the same problem is quite difficult for a computer
and has been researched for several decades now.

The difficulty in correspondence estimation is caused by several factors:
images are often corrupted by sensor noise, e.g. when recorded in a poorly
lit environment Section 1.1; the captured scene signal is discretized and
represented by some finite image resolution; not every pixel actually has a
correspondencing partner in the other views as it might be occluded; and
ambiguities due to the absence of texture are difficult to solve.

If one can solve the dense correspondence problem a variety of different
applications becomes possible especially in the field of computer vision.
Robot navigation and autonomous cars require depth perception to avoid
obstacles [Giachetti et al. 98, Kastrinaki et al. 03]. Quality assurance in
industrial applications is often based on stereo algorithms to detect cracks

113

114

and ridges in manufactured products. Reconstruction of urban environ-
ments from images has recently gained a lot of interest in the research
community [Gallup et al. 07,Frahm et al. 10]. The dense correspondences
allow for video editing [Adobe Systems Inc. 13, The Foundry 13], super-
resolution [Irani and Peleg 91], video stabilization [Matsushita et al. 06], to
interpolate between images [Chen 95,Lipski et al. 10a], e.g. to create bullet
time effects made famous in the blockbuster movie The Matrix and for
specific tracking applications in graphics, e.g. the local pose optimization
for texture correspondence matching in Chapter 11 is related. Disparity
remapping based on the correspondences and reconstructed depth becomes
important to avoid visual fatigue in stereoscopic cinema [Devernay and
Beardsley 10].

The following will give a hands-on guide on how to compute dense
correspondences between images. After a short overview of current state-
of-the-art approaches, Section 8.2, a robust solution to the correspondence
problem is described and extended, Section 8.3. It is described how to
compute correspondences from multiple images, Section 8.4, and means to
speed up the computations using graphics hardware are presented, Sec-
tion 8.5.

8.2 Overview

This section gives a brief overview of different approaches dealing with the
dense correspondence problem. The goal is to find the best correspond-
ing (sub-)pixel position in neighboring views for every pixel of a reference
image, if such corresponding positions exist.

The algorithms dealing with the correspondence problem can be broadly
classified into two categories: stereo and optical flow. Intrinsically the prob-
lem is the same for both of them, finding good correspondences between
the views, but they differ in the premises. Stereo can be seen as a special
case of optical flow, where correspondences are searched along the same
scanline (or epipolar line), reducing the solution space from 2D to 1D. The
following will give a short overview of the most seminal papers in both
categories and their contributions.

Stereo In analogy to the human eyes, the input to classic binocular stereo
algorithms are two images Il and Ir, a left and a right one. The task is
to find for every pixel p with pixel coordinates (x, y) in the left image a
corresponding pixel q in the right view with pixel coordinates (x− dp, y).
dp is called the disparity of pixel p. The disparity information is typically
saved in an intensity image, the so-called disparity map D, where low/dark

8. Reconstruction of Dense Correspondences 115

Figure 8.1: Dense correspondence estimation in stereo for the Middlebury
Tsukuba data set [Scharstein and Szeliski 02]. (a) The task is to find for
each pixel at any position (x, y) in the left view (b) a corresponding position
(x − d, y) in the right view and encode the result in (c) a disparity map
from which 3D coordinates can be reconstructed. In the stereo setting,
the corresponding pixels lie on the same scanline, whereas in the more
general problem of optical flow estimation the correspondence can be any
position within the right view. Instead of comparing single pixel values,
comparing neighborhoods of pixels (shown as the overlaid grid) results in
higher robustness.

values encode low disparity and high/bright values encode high disparity,
Fig. 8.1(c).

In stereo one generally distinguishes between local and global meth-
ods. In the first category local areas of one image are matched to local
areas in the corresponding view, often called support regions. The dif-
ficulty lies in the choice of the support region as matching single pixels
is highly ambiguous in most scenes. Simple rectangular windows around
the pixel under consideration can be efficiently implemented [Hirschmüller
et al. 02,Mühlmann et al. 02] but it can be difficult to choose the right
size. By shifting the center position of the window and testing differ-
ent sizes [Fusiello et al. 97] or by deactivating parts of the support re-
gion [Hirschmüller et al. 02, Veksler 02] one can hope that at least one
constellation does not overlap with a depth discontinuity. This otherwise
poses a matching problem as in many cases a depth discontinuity marks the
separation line between two objects with different disparities and, there-
fore, a different amount of motion in image space from the left to the right
view. The research community has thus investigated methods to find a
good support region, with different criteria on how much influence each
pixel inside this region should have on the final result [Hosni et al. 13].

One key component and a breakthrough for local methods in recent
years have been the introduction of adaptive support weights [Yoon and
Kweon 05]. The idea is to adjust the influence of neighboring pixels on the

116

final matching cost based on a similarity metric, most often color and spa-
tial similarity. [Yoon and Kweon 05]’s bilateral weighting scheme is based on
a Gaussian distribution depending on the spatial proximity and proximity
of intensity values. To overcome the problem of spatially close but distinct
objects influencing each other, the spatial proximity can be exchanged with
a geodesic distance [Hosni et al. 09].

Unfortunately, the computation of adaptive support weights is costly if
implemented in a naive way. To speed up the aggregation step it can be
converted to an image filtering procedure. It turned out that the bilateral
weighting scheme of [Yoon and Kweon 05] is equivalent to applying a cross-
bilateral filter or derivations of it to the x, y-slices of a cost volume [Hosni
et al. 11b,Richardt et al. 10,Zhang et al. 10a,Ju and Kang 09]. To further
speed up the computation, the pixel-wise matching for fixed disparities can
be elegantly formulated as a plane-sweeping algorithm on the GPU [Yang
and Pollefeys 03,Gallup et al. 07,Zach et al. 08] allowing for real-time stereo
implementations.

An implicit assumption made by the aforementioned techniques is that
each local support region is basically a patch with fronto-parallel orienta-
tion to the image plane of the reference view. Treating the slices in the
cost volume not as virtual planes representing a certain disparity but as
real 3D planes in the scene one can easily use rotated versions of these
slices to compute the matching cost for slanted surfaces [Gallup et al. 07].
The computation times, however, increase linearly with the number of ori-
entations used. Therefore, [Zhang et al. 08] propose to iteratively refine
the disparities and orientations in a feedback loop. Another alternative is
to initialize each pixel with a random orientation and disparity and prop-
agate good matches to neighboring pixels based on a PatchMatch update
scheme [Bleyer et al. 11a].

The second category of stereo algorithms form the so-called global meth-
ods. Global stereo methods pose the matching problem as an energy min-
imization problem which is usually of the following form:

E(D) = Edata(D) + α · Esmooth(D) , (8.1)

where D is the current estimate of the disparity map. The goal is to find
D that produces the lowest energy. Edata in this context is a photo-
consistency measure that can be equal to the matching function of the
local methods but is traditionally simpler. Instead of implicitly stating
a smoothness function in the form of a support region, as in the local
approaches, here the smoothness is explicitly expressed within the error
formulation as Esmooth. This regularization of the solution can be espe-
cially useful for textureless regions as it basically smoothes out the solution.
Several optimization approaches have been proposed to minimize Eq.(8.1)

8. Reconstruction of Dense Correspondences 117

through dynamic programming [Veksler 05,Bleyer and Gelautz 08], graph-
cuts [Boykov et al. 01,Hong and Chen 04,Bleyer and Gelautz 07] or belief
propagation [Sun et al. 03,Yang et al. 06b,Taguchi et al. 08].

Interestingly, the usage of tree-reweighted message passing (TRW) and
a comparison to ground truth results revealed that modern optimization
algorithms yield energies that are actually lower than that of the ground
truth solution [Szeliski et al. 08]. This indicates that the model in Eq.(8.1)
is actually a limiting factor. Further advances, therefore, need to extend the
model. Explicit occlusion handling or enforcing symmetrical matches be-
tween the input images was used, e.g., in [Kolmogorov and Zabih 01,Lin and
Tomasi 04, Sun et al. 05,Woodford et al. 09]. Truncating the smoothness
term to a user-defined maximum value favors large jumps in the disparity
map instead of many small changes [Hirschmüller 05, Sun et al. 05, Yang
et al. 06a]. Segmentation-based methods presegment the image into patches
of coherent color and match whole segments at once [Deng et al. 05,Hong
and Chen 04,Zitnick et al. 04]. The idea is that in many cases depth dis-
continuities coincide with segment borders. An extension of segmentation-
based stereo is object-based stereo which matches semantic objects instead
of single colored patches. In this way it becomes possible to handle even
semi-occluded surfaces [Bleyer et al. 11b]. Extending the idea of object-
based stereo one can estimate simple 3D approximations for the different
objects [Bleyer et al. 12]. On the basis of these higher semantic concepts
one can add sophisticated additional constraints to the optimization, for
instance to prevent intersections between the objects or to add a gravity
constraint.

Optical flow The problem of optical flow estimation is strongly related
to the stereo problem and several of the aforementioned algorithms are
applicable to both. Basically, optical flow estimation is a generalization
of the stereo problem from a 1D solution space, the disparity map, to a
2D solution space, the flow or motion field. While stereo algorithms aim
at reconstructing correspondences between images captured at the same
instance in time, optical flow allows to track the motion of pixels also
across the time dimension, e.g. in a video.

During the last 30 years, hundreds of research papers have been pub-
lished in the field of optical flow and various surveys and benchmarks cover
and compare the state-of-the-art [Barron et al. 94, Baker et al. 11]. The
seminal work of [Horn and Schunck 81] and [Lucas and Kanade 81] laid the
foundations for the algorithms to follow. Interestingly, similar to stereo,
one can distinguish global and local approaches to the optical flow problem,
explicitly enforcing smoothness in the solution [Horn and Schunck 81] and
assuming local constancy within a window around each pixel [Lucas and

118

Kanade 81]. Neither assumption of smoothness holds at motion boundaries
for which robust [Black and Anandan 96,Zach et al. 07] and anisotropic reg-
ularizers [Nagel and Enkelmann 86,Werlberger et al. 09,Sun et al. 10,Zim-
mer et al. 11] have therefore been proposed. To reduce the influence of
outlier pixels caused by brightness changes and sensor noise the simple
data terms based on color-constancy assumption are mostly replaced by
robust penalizer functions [Black and Anandan 96, Brox et al. 04, Zach
et al. 07] or pixel-descriptors [Mileva et al. 07,Liu et al. 08].

To cope with fast motion, scale-space approaches [Anandan 89] and
iterative warping schemes [Alvarez et al. 00, Brox et al. 04] make use of
image pyramids to find corresponding pixels. As downsampling works only
well for sufficiently large objects several search schemes have been proposed
in the literature that either perform a full search [Steinbrücker et al. 09,Linz
et al. 10a,Lipski et al. 10b,Hosni et al. 11b] or use tracked features as reliable
priors for the optimization [Brox and Malik 11]. In a more hardware-based
approach [Lim et al. 05] make use of a high-speed camera to reduce the per
pixel displacement to less than a pixel.

Probably due to its success in stereo, explicit occlusion handling has
been introduced to optical flow estimation as well. The occlusion detection
thereby is either based on the optimization residual and divergence of the
flow [Xiao et al. 06, Sand and Teller 06], the symmetry of forward and
backward flow [Alvarez et al. 07, Linz et al. 10a, Lipski et al. 10b], or is
integrated in the image formation model making use of alternate exposure
images [Sellent et al. 11] by alternate capturing of long- and short-exposed
images in a video.

8.3 Dense Correspondence Estimation

In the following, an approach is described to compute dense correspon-
dences between two images. The algorithm is mainly based on the fast
cost-volume filtering by [Hosni et al. 11b] which is one of the top ranked lo-
cal methods for stereo and which is also applicable to the more generalized
optical flow problem1. For simplicity it is assumed that the images have
already been rectified, i.e. corresponding points lie on the same scanline,
Fig. 8.1. Otherwise, it is assumed that standard rectification algorithms are
applied first [Hartley and Zisserman 03]2. These are generally based on the
camera registration procedures described in Chapter 7. These constraints
will be loosened in the later part of this chapter (Section 8.5).

The basic task of estimating a disparity map D can be formulated for

1Code is available at https://www.ims.tuwien.ac.at/publications/tuw-210567
2Code is available at http://www.robots.ox.ac.uk:5000/˜vgg/hzbook/code/.

8. Reconstruction of Dense Correspondences 119

(a) (b) (c) (d)

Figure 8.2: Different dissimilarity functions. (a) Pixel-wise matching solely
based on color/intensity is highly ambiguous. (b) A 3× 3 correlation win-
dow is still noisy. (c) A 21×21 correlation window results in edge fattening.
(d) The cost filter method of [Hosni et al. 11b].

each pixel p as

dp = argmin
0≤d≤dmax

c(p,p− d) . (8.2)

The term dmax is a user-defined constant which must be larger than the
expected maximum disparity. Note that due to rectification d is always
a positive value or 0. In case the disparity map for the right image is to
be computed p − d in Eq.8.2 is replaced by p + d. For simplicity, only
disparity computations for the left image are considered. The simplified
notation p − d denotes the pixel 2D pixel position (xp − dp, yp) where
(xp, yp) are the pixel coordinates of pixel p. The symbol c denotes a cost
/ dissimilarity function.

Dissimilarity functions To find an appropriate disparity dp for each
pixel p one needs to find a suitable dissimilarity function c in Eq.(8.2).
The probably most simple one would be a naive per-pixel matching, that
is, c(p,q) = |Ilp − Irq|2 where Ilp denotes the pixel intensity of Il at pixel
position p and | · |2 is the Euclidean distance between the two vectors. But
matching only simple intensity values is highly ambiguous and leads to very
noisy results, Fig. 8.2(a).

Instead of matching single pixels one can match small image patches
centered at p. In this case the cost function becomes

dp = argmin
0≤d≤dmax

∑

q∈Wp

c(q,q− d) , (8.3)

where Wp is a square window centered at p, and c as defined above. Fig-
ure 8.2(b) and 8.2(c) shows the resulting disparity maps using correlation
windows of the size 3× 3 and 21× 21 pixels, respectively. The choice of a
right size has a notable influence on algorithmic performance, and no single

120

window size generally works for all cases. While smaller window sizes cap-
ture finer details, matching scores can be highly ambiguous. Larger window
sizes, on the other hand, lead to edge fattening around discontinuities and
oversmooth results. What is needed is an adaptive support weight that
adjusts the shape of the window or, in other words, reduces the influence
of pixels that do not belong to the same object as pixel p.

Adaptive support weights Adaptive support weights adjust the influ-
ence of each individual pixel considered in the matching process. This can
be formulated as a simple extension to Eq.(8.3)

dp = argmin
0≤d≤dmax

∑

q∈Wp

w(p,q) · c(q,q− d) , (8.4)

where w(p,q) is a weighting function which should return a value of 1
if q has the same disparity as p, and 0 otherwise. As this disparity is
not known, the weight is usually based on some heuristic that represents
the probability that pixel q exhibits the same disparity as p. The most
common assumption made is that pixels close to p are more likely to belong
to the same object and have a more similar disparity than pixels farther
away. Additionally, pixels with similar color are more likely to belong to the
same object than those with dissimilar color values. The bilateral weighting
scheme proposed in [Yoon and Kweon 05] expresses this correlation as

wb(p,q) = exp

(

−
(
cc(p,q)

σc
+
cs(p,q)

σs

))

. (8.5)

The function cc(p,q) denotes the similarity in color defined as the Eu-
clidean distance of pixels at position p and q in RGB space, whereas
cs(p,q) is the spatial component defined as the Euclidean distance of p
and q’s pixel coordinates. The terms σc and σs are user-defined constants
that control the spread of each term similar to the window size before.

The computation of the bilateral weights for each pixel in the input
image is time consuming. A fast and qualitatively even better alternative
to the bilateral weighting scheme in Eq.(8.5) is the guided image filter [He
et al. 10]3. While the output is similar to the bilateral weighting, the
computation is different

wg(p,q) =
1

|W|
∑

k:(p,q)∈Wk

(1 + (Ilp − µk)
⊤(Σk + ǫU)−1(Ilq − µk)) , (8.6)

with µk and Σk being the mean vector and covariance of Il in a squared
window Wk of user-defined size, centered at and being constant for each

3Code is available at http://research.microsoft.com/en-us/um/people/kahe/eccv10/

8. Reconstruction of Dense Correspondences 121

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cost function

Guide signal

(a)

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Resulting signal

(b)

Figure 8.3: 1D example of the guided image filter [He et al. 10] for a 1D
signal. (a) The filter takes a guide signal (green) and fits it locally to the
given, potentially noisy, cost function (blue) resulting in (b) a smoothed
but edge preserving signal (red).

pixel k. |W| denotes the number of pixels in the window. U is the identity
matrix and ǫ a smoothness parameter. While, at first glance, Eq.(8.6)
appears highly complex in comparison to Eq.(8.5), it turns out that the
computation requires only running a series of box filters which can be
computed in constant time, independent of the window size. For details
see [He et al. 10].

Intuitively, the guided image filter takes a guide image, in this case
the input image Il, and tries to fit it locally to the cost function Cd that
encodes pixelwise costs for a certain disparity d.

Cd
p = c(p,p− d) = |Ilp − Irp−d| ,

This results in a smoothed version of Cd which is equal to aggregating the
weighted costs in a given window around each pixel. For this, the best
fitting linear transformation for local windows Wk around each pixel is
computed, i.e., a scaling and an offset of the guide image, to get from Il to
Cd. In a second step the linear transformation coefficients of all windows
overlapping at a pixel are averaged. An example for a single-channel input
is given in Fig. 8.3. Other commonly used matching techniques and pixel
descriptors can also be found in Chapter 7.

Cost volume filtering Stacking the functions Cd for all disparities d
onto each other into a 3D array C creates the so-called cost-volume. The
filtered cost-volume can be extracted by filtering each x, y-slice that belongs
to a fixed disparity d with the guided image filter as described above. The
final disparity for each pixel p is then defined in Winner-Takes-All manner
as

dp = argmin
0≤d≤dmax

Cd(p) .

122

Occlusion Occluded pixels are detected using a left-right cross checking
procedure. Once the disparities for image Il to image Ir are computed, one
can exchange both images and additionally compute the disparities from
Ir to Il. A pixel p is marked as invalid, i.e. occluded, if dlp 6= drp−dp

where

dlp is the disparity at pixel p with reference image Il. Again note that the
disparity is always positive and the sign in Eq.(8.2) is changed according
to whether the disparity for the left or right image is computed.

One cannot assign disparities to pixels being occluded in one of the
input images. If the application demands such an assignment, it has to be
based on some kind of sensible heuristic. In [Hosni et al. 11b] a weighted
median filter is used for filling invalidated pixels.

Extensions An advantage of the presented framework is that it naturally
extends to higher dimensional and more fine-grained solution spaces at the
cost of higher computation times. In the previous example each slice in
the cost volume corresponds to a certain integer-valued disparity. One can
easily increase the precision to fractional values by increasing the number
of slices and assigning each slice to a certain fractional disparity. More
generally speaking, each slice of the cost volume can be considered to be a
distinct label l from a set L = {1, . . . , L}. The user only needs to specify
how these labels are mapped to semantically meaningful parameters for
the algorithm. That means one is not bound to interpret l only as integer-
valued disparities but could extend the label space to fractional disparities
as well, e.g. [Gehrig et al. 12]. Alternatively, a set of slanted windows could
be included to better handle slanted surfaces that are not fronto-parallel,
e.g. [Gallup et al. 07].

By defining a mapping from a 2D solution vector (u, v) to the label
space L one can directly extend the presented stereo approach to optical
flow problems by exchanging dp and d in Eq.(8.2) by (up, vp) and (u, v),
respectively. In this context it should be noted that modern optical flow
methods mostly use a more sophisticated cost function including not only
color- but also gradient-similarity, details for the presented approach can
be found in [Hosni et al. 11b].

Limitations A principal limitation of all local methods, such as the one
presented, is their inability to cope with highly ambiguous data such as
unicolored walls or objects. Depending on the application this may not
be crucial, e.g., for image interpolation, as no visible artifacts will occur if
objects of the same color are interpolated incorrectly. In other applications,
such as autonomous driving vehicles or robot navigation, this may pose a
high risk, because there, accurate disparity, which means accurate depth, is
crucial. Imagine similar stone pillars standing next to each other. Matching

8. Reconstruction of Dense Correspondences 123

the right ones is highly ambiguous. In such cases more complicated global
correspondence estimation algorithms are required, a good overview is given
in [Bleyer and Breiteneder 13].

Another limitation of the presented problem formulation is it’s discrete
nature, which means it can only produce a solution that consists of combi-
nations of preset labels. Even though labels may represent fractional values
and the solution is therefore sub-pixel precise, it is always limited by the la-
bel space. The quality of any correspondence algorithm also depends highly
on the scene content. While local methods are ranked high in the famous
Middlebury benchmark [Scharstein and Szeliski 02], they are not always
as successful in other benchmarks, e.g. [Geiger 12]. The reason could be a
higher sensitivity to noise or ambiguities occurring more often in natural
scenes. And finally occlusion handling can usually not be integrated into
the matching process directly with local methods. Once the cost-volume
has been created one could exchange the Winner-Takes-All strategy by a
more sophisticated global label selection algorithm that could handle such
cases by a better or more robust disparity assignment even for pixels oc-
cluded in one view. Therefore, the presented algorithm is a good starting
point for further investigation of dense correspondence algorithms.

Section 8.4 extends the stereo correspondence estimation to multiple
input cameras and deals with appropriate camera layouts and scene repre-
sentations. Section 8.5 describes the plane-sweeping stereo algorithm that
is easiy portable to the graphics card to allow even real-time correspondence
estimation.

8.4 Multi-View Stereo

The following section gives an overview of multi-view stereovision. The
term multi-view stereovision (MVS) refers to stereovision-based reconstruc-
tion from n > 2 views, I0 to In−1, and is sometimes called multiocular
stereovision in contrast to binocular stereovision from one pair of views,
Section 8.3. MVS has been an active field of research for several decades
and more than seventy algorithms are listed on the Middlebury Multi-View
Benchmark website [Seitz et al. 06]. This benchmark provides a commonly
accepted test suite to evaluate the quality of multi-view stereo algorithms.

An important assumption of any MVS method lies in its required, com-
patible or intended camera layout since various possibilities exist and may
have an impact on the 3D reconstruction strategy, Section 2.2.

Most of MVS methods (notably among those on the Middlebury list)
are designed for n cameras freely laid out in space. Some apply binocular
stereovision (as previously discussed in Sect. 8.3) on different couples of
views (Ii, Ij) and then merge their separate binocular results. The main

124

difficulty in such approaches concerns regularizing the union of separate
results, especially in scene areas where reconstructions overlap. Common
problems to be solved in such areas are to reduce too high point density
and to resolve ambiguities/inconsistencies. This task pertains to point
cloud merging and is discussed in Chapter 10 in more detail. Another
type of MVS approach for a free camera layout consists in fitting some
form of geometric model of the scene in order to maximize its local
photo-consistency in available views [Furukawa and Ponce 10].

Some other MVS methods, sometimes called multi-baseline stereovision
methods, are designed for the “parallel” or “decentered parallel” camera
layouts discussed in Section 2.2 and especially fitted for 3DTV content
capture. Those layouts are characterized by aligned, evenly distributed
and parallel cameras. As will be demonstrated below, such restrained set-
tings induce a set of geometrical constraints on corresponding pixels from
different views arising from the so-called simplified multi-epipolar geome-
try. Those constraints enable searching correspondences over every view at
once as a multi-view matching process [Okutomi and Kanade 93, Szeliski
and Golland 99,Niquin et al. 10,Ismael et al. 14]. This is also called multi-
scopic stereo matching and consists in matching n-tuples of pixels instead
of couples which yields a consistent and more robust reconstruction.

In the following, the main concepts behind multi-baseline stereovision
are reviewed. The “parallel” layout of Section 2.2 implies the optical centers
o0 . . .on−1 to be aligned and evenly distributed on the base line, parallel
optical axes orthogonal to this base line, cameras of same focal and dark-
room depth, sensors of same size and resolution nc × nl centered on their
optical axes with rows parallel to the base line. The “decentered parallel”
layout, Fig. 8.4, generalizes this setting by translating the sensor centers
off their optical axis in such a way that the line of sight of all the views, de-
fined for each camera by its sensor center and optical center, now converge
on a chosen 3D convergence point c, possibly at finite distance [Prévost
et al. 13]. The convergence point is of utmost importance in 3DTV content
shooting as it will be displayed exactly on the center of the 3D display
and thus controls how captured scene space is mapped in the perceived 3D
space, Section 2.2. One should note that, in this layout, the convergent
lines of sight no longer coincide with the parallel optical axes. The off-axis
translation of the “sensor” may be achieved both at hardware design stage
as sensor chip physical/mechanical decentering and/or, to a given extent, at
software post-processing stage as region of interest (ROI) cropping. In the
following, the term sensor ROI is used to denote all of the above mentioned
possibilities.

Another benefit of such a layout is usually achieved thanks to rectifi-
cation of the n views from aligned and evenly distributed cameras with

8. Reconstruction of Dense Correspondences 125

o0 oi

f

c

Sensors
plane

Optical axis

Optical center

Convergence point

[Virtual] ROI center

[Virtual] camera line of sight

[Virtual] sensor ROI

zc

xc

on−1

yc

.
Base line

Figure 8.4: Decentered parallel camera layout.

(approximately) convergent optical axes. Similar to its binocular counter-
part, the multiocular rectification consists in intersecting pixel rays by a
plane at distance f (virtual sensors’ plane) parallel to the common base line
connecting the optical centers, Fig. 8.4. The rectified virtual sensor ROI
in which the rectified views will be computed are then virtually laid in this
sensors’ plane with same size and orientation, so that the rows are parallel
to the base line. Furthermore, their centers are chosen to make every line
of sight converge at the chosen 3D convergence point c = (xc, yc, zc) (co-
ordinates expressed in reference frame of camera 0), Fig. 8.4. One should
note that there is not as much freedom in the layout of the actual cameras
as in the binocular case as the rectification process relies on actual optical
centers being aligned and rather evenly distributed.

For n images Ii recorded or rectified in “(decentered) parallel” layout
and numbered i ∈ {0, n−1} from left to right, the epipolar constraint, pre-
viously discussed for the binocular case, Fig. 8.5, states that any pixel at
pi in any image Ii represents the actual 3D scene point projected onto pi.
Pixel pi and the optical center oi of the camera are aligned on pi’s “pixel
ray”. Considering that pixel rays of corresponding pixels at pi and pj in

two views Ii, Ij have to intersect at their common 3D point p, a straightfor-
ward derivation yields that optical centers oi, oj and corresponding pixels
at pi, pj have to be coplanar (they belong to 2 intersecting and yet dif-
ferent lines). An epipolar plane is then defined for a couple of views (i, j)
by both optical centers and any studied pixel in one of these views. The
corresponding pixel in the other view has thus to be searched for within
the epipolar segment defined as the intersection of this plane with the other

126

oi

p

Sensors
plane

oj

Base line

pi

pi’s pixel ray

pj

pj ’s pixel ray

Ii Ij

Figure 8.5: Simplified epipolar geometry.

image (black horizontal line in Fig. 8.5). When those two (rectified) cam-
eras are set in “(decentered) parallel” layout, the epipolar segment in Ij

defined by pixel pi in Ii is part of the scanline of Ij of the same rank as
the one holding pi in Ii.

In the multi-baseline context, because the optical centers are aligned,
epipolar planes defined for a given pixel pi in Ii and any other view Ij

coincide. Successive pairwise binocular epipolar constraints thus ensure
that corresponding pixels have the same y-value in every view Ii. Hence,
any 3D point p = (xp, yp, zp) is projected into the [rectified] views Ii,
Ij onto corresponding pixels whose coordinates are respectively pi and
pj = pi − (di,jpi

, 0), where di,jpi
= ui − uj is called horizontal disparity.

A relationship between the horizontal disparity di,jpi
and p’s depth zp

can be established based on scale ratios between similar triangles. Let us
consider the scale ratios in two pairs of such triangles, with apices on c and
p, respectively, and the camera centers oi and oj , Fig. 8.6. Let ei,j be the
distance between the center of the sensor ROI of camera i and j, defined
by the triangle with apex on c, and ei,j − di,jpi

be the distance between
the corresponding pixels pi and pj , in the sensors’ plane, defined by the
triangle with apex at p. The relation between these two triangles yields
the disparity-to-depth relation:

ei,j = bi,j · (zc − f) · z−1
c

ei,j − di,jpi
= bi,j · (zp − f) · z−1

p

}

⇒ di,jpi
= f · bi,j · (z−1

p − z−1
c) .

When the optical centers are evenly distributed (i.e., ∀i, j ∈ {0, . . . , n −
1}, bi,j = (j − i) · b), disparity values are scaled by (j − i):

∀i, j ∈ {0, . . . , n− 1} di,jpi
= (j − i) · f · b · (z−1

p − z−1
c) = (j − i) · dp .

8. Reconstruction of Dense Correspondences 127

pi

oi

ei,j − di,jpi

ojbi,j

f

zp

c

p

Sensors’

nc/2 nc/2

uj
plane

ui
pj

Optical axis

Optical center

Convergence point

Scene point

[Virtual] ROI center

[Virtual] camera line of sight

[Virtual] sensor ROI

p’s projection on ROI

zc
ei,j

Figure 8.6: Projective geometry in off-axis simplified epipolar geometry
(top view).

and disparity values for successive views are identical:

∀i ∈ {0, . . . , n− 2} di,i+1
pi

= dp.

This common disparity dp among each pair of successive views is conve-
niently used for each disparity assumption d for a pixel at pi in Ii. Instead
of testing only two corresponding pixels for photo-consistency, one builds
an associated geometrically consistent n-tuple in the multiscopic stereo
matching process:

∀j ∈ {1, . . . , n− 1} pj = pi + (i− j) · (d, 0) . (8.7)

These n-tuples contain one pixel per image, ordered according to their
image number. Furthermore, thanks to Eq.(8.7), they all lie in the same
epipolar plane and a common horizontal disparity assumption d is assigned
to them. As such, pixels of a single n-tuple are corresponding projections
on every view of a single 3D point.

To summarize, the presented multi-baseline stereovision paradigm re-
formulates the dense correspondence reconstruction problem as the answer
to the question: “which of the geometrically consistent n-tuples correspond
to actual 3D points in the scene according to their photo-consistency in
the n views?”.

Aside from the differences in the camera layout they are intended to
handle, MVS methods may also be categorized according to what data or
representation of the world they operate on [Seitz et al. 06]:

128

Scene-based methods employ a 3D scene model whose projections on
views are checked for photo-consistency. As they are designed for a general
freely arranged camera layout, they often use a 3D volume and rely on
photometric similarity measures of the projections of the voxel cells, and
remove others from the volume. Voxel coloring [Seitz and Dyer 99] pre-
serves voxels whose cost is below a threshold. Space carving [Kutulakos
and Seitz 00] progressively removes the photo-inconsistent voxels from an
initial volume. More recently, a different category of methods has been pro-
posed that use a scene model composed of a collection of planar patches or
surfels whose depth and orientation are separately optimized to maximize
their photo-consistency. For representing patches, such methods rely on
planar polygons [Habbecke and Kobbelt 06], circular disks [Habbecke and
Kobbelt 07] or pre-segmented superpixels [Micusik and Kosecka 10]. The
seminal work of [Furukawa and Ponce 10] fits patches on pixels around
detected sparse features, then expands them in order to fill gaps between
their projections, and afterwards reconstructs and refines a mesh.

Some multi-baseline methods make use of the disparity space introduced
by [Yang et al. 93] for reconstruction instead of working on the standard
3D scene. Making use of photo-consistency and visibility reasoning, [Ismael
et al. 14] optimize a so-called materiality map in this space for improved
multi-view reconstruction.

Image-based methods compute a set of depth or disparity maps which
are merged later [Narayanan et al. 98,Goesele et al. 06] or to which they
apply constraints [Gargallo and Sturm 05, Szeliski 99] to ensure a consis-
tent 3D scene reconstruction. Some methods that expect a more restrictive
camera layout, typically multi-baseline, directly match n-tuples as multi-
scopic pixel sets [Niquin et al. 10,Kang and Szeliski 04], as described above.
Amongst methods intended for a free camera layout, some computationally
more intensive techniques are dedicated to MVS from community photo col-
lections (CPC) and have gained an increasing interest. They have to handle
a large number of uncalibrated views of a scene [Goesele et al. 07]. New dif-
ficulties then arise as such views are typically shot at different times, with
differing acquisition geometries (viewpoints, angles, focal lengths, resolu-
tions), and usually differing environmental conditions (weather, exposure,
occlusions). This makes it necessary to restrict the matching to subsets
of views sharing similar exposure, and empower the methods to deal with
significant baselines (distances) between the cameras.

Feature-based methods compute dense correspondences by first
matching feature points which can be more robustly estimated than a
complete disparity map. In a second step a surface model is fitted to

8. Reconstruction of Dense Correspondences 129

the reconstructed features [Taylor 03].
Image-based methods that rely on multiscopic matching of n-tuples

share an important advantage with scene-based methods: implicit consis-
tency of the reconstruction. Furthermore, both take full advantage of pixel
redundancy to avoid as many false matches as possible while enabling smart
occlusion handling schemes. The photo-consistency cost implied in those
methods is often defined, for each 3D point of interest, as the aggregation
of dissimilarity costs of its corresponding pixels over a set R of several pairs
of views

c(p) =
∑

(i,j)∈R

c(pi,pj) . (8.8)

Here c(pi,pj) is the same cost function as used before in the binocular
case and pi is the pixel position of the backprojected 3D point p into the
i-th view Ii. Commonly employed pair sets R consist of:

• successive views R = { (i, i+ 1) | ∀i ∈ {0, . . . , n− 2} },
• every available pair R = { (i, j) | ∀i, j ∈ {0, . . . , n− 1}, i < j },
• pairs specifically selected according to geometrical considerations
and/or similar recording conditions.

The first option is often preferred in a rectified layout as it makes the
stereo method less sensitive to colorimetric shifts among the image set.
Contrarily, the third is used when a very large number of views is available
with widely spread viewpoints.

Using all views to compute the dissimilarity cost in Eq.(8.8) rarely leads
to high-quality reconstructions, as a scene point p may be occluded in some
of the cameras. However, as multiple views are available visibility may be
reconstructed as well during the correspondence estimation [Kolmogorov
and Zabih 02,Kutulakos and Seitz 00, Seitz and Dyer 99]. This visibility
information can be used to improve the correspondence reconstruction by:

• restricting to a useful set of image pairs Rp = {(i, j) ∈ R | with p
visible in both i and j},

• weighting the dissimilarity costs in Eq.(8.8) according to p’s visibility
in the images, or

• replacing the dissimilarity cost by a predefined, heavy, penality cost
for pairs for which p would occlude some already reconstructed 3D
point.

Multi-view stereovision methods vary strongly with respect to methodology
and tend to be computationally more complex than their binocular coun-
terparts, as they have to deal with more data. Nevertheless, they tend to

130

Figure 8.7: Results from a multi-baseline, scene-based method [Ismael
et al. 14] on the Middleburry data set “Rocks2”: left, one source view;
center, disparity map computed from two views only; right, disparity map
computed from a set of 4 views. Green rectangles highlight an area more
completely reconstructed from 4 views; red rectangles focus on some areas
more regularly reconstructed from four views; the blue rectangle points to
a region with higher accuracy in the 4-view case.

exploit the increased redundancy to achieve more robust reconstructions:
Fig. 8.7 shows that, with similar context, data, method and parameters, re-
sults computed from four views are more regular and complete and contain
less outliers than those using two views.

8.5 Stereo on the GPU

Stereo estimation is typically a significant computational expense and im-
proving the computation time of stereo has long been in the focus of re-
search. One characteristic that has been leveraged is that the depth/dis-
parity estimation in local stereo for pixel (x, y) has no dependencies to any
other pixel, Section 8.2 and 8.3. Hence, parallel computation has long been
explored for improving the computation time. Commodity graphics hard-
ware (GPUs) nowadays provides a massively parallel processing platform
with thousands of parallel compute cores and a significantly higher memory
bandwidth than CPUs have at their disposal. Yang and Pollefeys [Yang
and Pollefeys 03] proposed to leverage these highly parallel architectures to
improve the computational performance utilizing the plane-sweeping stereo
algorithm [Collins 96]. Besides leveraging the parallelism of GPUs, their
method further leverages the high efficiency of texture mapping in GPUs.

Plane-sweeping stereo [Collins 96] is a multi-view stereo method with
n > 2 views, I0 to In−1 which does not rely on multiocular rectification,
Section 8.4. It can use any set of multiple overlapping views to perform

8. Reconstruction of Dense Correspondences 131

stereo estimation. Plane-sweeping stereo estimation only requires the cam-
era calibration of the views I0 to In−1, as for example computed by struc-
ture from motion, Chapter 7. The core idea of plane-sweeping stereo is to
perform the dense correspondence estimation by testing a series of plane
hypotheses Πi with i = 1, . . . ,K for the scene, i.e. it assumes the scene is
on a plane and then tests this hypothesis. Once all K plane hypotheses
have been tested, the best plane is chosen for each pixel. This, however,
does not mean that the scene has to be planar, as the plane only represents
a local planar approximation of the scene for the function used to compute
the matching cost. Please note that each plane is basically a slice in the
cost-volume introduced in Section 8.3.

In plane-sweeping stereo the depth map relative to one of the im-
ages I0, . . . , In−1 is computed. This image is referred to as the refer-
ence view Iref and its camera projection matrix is transformed to be
Pref = [U3×3 03×1] where U is again the identity matrix. All other
images’ camera projection matrices are transformed as well to be in the
same coordinate system as the reference image Iref . Given this unified
coordinate system, the plane hypotheses Πi are chosen with respect to Iref

to sample the depth interval [dnear, dfar] with K steps 4 from a closest dis-
tance dnear to a farthest distance dfar. The plane hypotheses Πi in Yang
and Pollefeys [Yang and Pollefeys 03] were chosen to be fronto-parallel to
the reference image Iref , i.e. their normals ni are equal to [0 0 1]T and their
distance di corresponds to the depth (distance from the reference camera
to the plane). Conceptually, to test any specific plane hypothesis Πi all
views can be warped onto the plane and their photoconsistency 5 can be
evaluated using any of the cost functions from Section 8.3. This would
require the definition of a raster on the plane hypothesis Πi, which is a
challenge. Equivalently, a hypothesis Πi can be tested with respect to the
reference view Iref by warping all other images {I0, . . . , In−1}\Iref to the
reference view Iref . Photoconsistency at each pixel (x, y) in the reference
image Iref can then be tested using the warped images. The warp of pixel
(x, y) from the reference view Iref to image Ij over plane Πi is a planar
mapping and can be described by a planar homography HΠi,Pj . Here,
Pj = Kj

[
RT

j −RT
j Cj

]
is the camera projection matrix of the camera

corresponding to image Ij with Kj being the camera calibration matrix
and Rj , Cj representing the rotation of the camera and the camera center,
respectively [Hartley and Zisserman 03]. The homography HΠi,Pj is given

4Please note that the steps are typically not equidistant steps. They are chosen to
have equal disparity sampling in the reference view. For more details on the hypotheses
generation see Gallup et al. [Gallup et al. 07].

5Photoconsistency is the color similarity, i.e. the highest photo consistency is achieved
when all views have the same color.

132

Figure 8.8: Left: Plane-sweeping stereo’s reference image from an outdoor
video sequence. Right: Depth map computed by plane-sweeping stereo
using a total of eleven views.

by:

HΠi,Pj = Kj

(

RT
j +

RT
j Cjn

T
i

di

)

K−1
r . (8.9)

Then, the location (xj , yj) in image Ij of the warped pixel (x, y) in the
reference image Iref can be computed by

(x′ y′ w′)T = HΠi,Pj (x y 1)T and xj =
x′

w′
, yj =

y′

w′
. (8.10)

If the scene point that projects into pixel (x, y) is on the plane Πi then
the colors of pixel (x, y) in the reference image Iref and the color of pixel
(xj , yj) in image Ij should be very similar. Similar to the binocular case,
their similarity can be measured by a variety of measures, as explained in
Section 8.3.

Using the GPU, the warping between the reference image Iref and im-
age Ij with the homography HΠi,Pj can be performed using projective
texture mapping [Segal et al. 92], i.e., a projection of an input image onto
a geometric primitive. This projection is highly efficient on GPUs. The
similarity evaluation and the selection of the best plane hypothesis for
each pixel in the reference view are independent for each pixel and hence
can be performed in parallel as well. This high degree of parallelism pro-
vides speedup factors of one hundred and more for stereo estimation on
GPUs [Gallup et al. 07]. In [Gallup et al. 07] it is further proposed to
improve the local approximation of the scene geometry with the plane hy-
potheses Πi by using multiple plane orientations. This indeed improves
the accuracy of the stereo estimation by better modeling planes that are
seen under oblique viewing directions, for example the ground plane. Fig-
ure 8.8 shows an image and its example depth map computed by multi-way
plane-sweeping [Gallup et al. 07].

8. Reconstruction of Dense Correspondences 133

8.6 Summary

This chapter only touched the tip of the iceberg that represents the field
of dense correspondence estimation. Nevertheless, the knowledge provided
here poses a useful basis for understanding any of the other current state-of-
the-art correspondence techniques and provides a flexible basic framework
from which to build upon. The simplicity of local methods makes them
attractive from a beginner’s perspective as well as a computational view.
Choosing the right dissimilarity function proves crucial for the quality of
the algorithm, but with well-chosen adaptive weights, state-of-the-art re-
sults are achievable. Posing the aggregation step as a filtering process can
dramatically improve the speed of the correspondence algorithm. To han-
dle occlusions, a symmetry check between the input images can be used and
several extensions including higher dimensional solution spaces and slanted
surfaces can be easily incorporated at the cost of higher computation times.

The finding that current state-of-the-art dense correspondence algo-
rithms achieve energies in the cost function that are below that of ground
truth scenes [Szeliski et al. 08] may appear dissatisfying for researchers
starting in this area. It should be mentioned, though, that this opens up
the door for more creative approaches that do not follow the standard paths
but try to come up with novel ideas and complete new algorithms that dif-
fer in more than the choice of a new data or regularization term. Maybe
the way to go are also specialized algorithms specifically targeting certain
scenes or applications. While from a vision perspective the goal is to find
the best automatic algorithm for dense correspondence matching, it may
make sense to have an algorithm that one can improve through additional
user input [Klose et al. 11,Ruhl et al. 13], e.g., for multimedia applications
like image interpolation. In such cases, these interactive correction tools
are of utmost importance. Further on, if massive amounts of images are to
be matched, speed may be of highest interest [Frahm et al. 10].

